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ECE 302: Lecture A.5 Wide Sense Stationary Processes
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Wide Sense Stationary Processes

Definition

A random process X (t) is wide sense stationary (W.S.S.) if:

1 µX (t) = constant, for all t,

2 RX (t1, t2) = RX (t1 − t2) for all t1, t2.

Remark 1: WSS processes can also be defined using the autocovariance
function

CX (t1, t2) = CX (t1 − t2).

Remark 2: Because a WSS is completely characterized by the difference
t1 − t2, there is no need to keep track of the absolute indices t1 and t2.
We can rewrite the autocorrelation function as

RX (τ) = E[X (t + τ)X (t)]. (1)
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Visualizing WSS Processes
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Figure: Cross sections of the autocorrelation function

RX (t1, t2) = 1
2 cos

(
ω(t1 − t2)

)
.
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Physical Interpretation of RX (τ)

Consider the following function:

R̂X (τ)
def
=

1

2T

∫ T

−T
X (t + τ)X (t)dt. (2)

This function is the temporal average of X (t + τ)X (t)

How do we understand R̂X (τ)?

R̂X (τ) is the “un-flipped convolution”, or correlation, of X (τ) and
X (t + τ).
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Correlation vs convolution
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(a) Convolution (b) Correlation

Figure: The difference between convolution and correlation. In convolution, the
function X (t) is flipped before we compute the result. For correlation, there is no
flip.
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So what?

Lemma

Let R̂X (τ)
def
= 1

2T

∫ T
−T X (t + τ)X (t)dt. Then,

E
[
R̂X (τ)

]
= RX (τ). (3)

Proof.

E
[
R̂X (τ)

]
=

1

2T

∫ T

−T
E [X (t + τ)X (t)] dt

=
1

2T

∫ T

−T
RX (τ)dt

= RX (τ)
1

2T

∫ T

−T
dt

= RX (τ).
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Example

Example 1. Consider a random process X (t) such that for every t, X (t)
is an i.i.d. Gaussian random variance with zero mean and unit variance.
Find RX (τ).

Solution.

RX (τ) = E[X (t + τ)X (t)] =

{
E[X 2(t)], τ = 0,

E[X (t + τ)]E[X (t)], τ 6= 0

Using the fact that X (t) is i.i.d. Gaussian for all t, we can show
E[X 2(t)] = 1 for any t, and E[X (t + τ)]E[X (t)] = 0. Therefore, we have

RX (τ) =

{
1, τ = 0,

0, τ 6= 0
.
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Visualization
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Figure: The difference between convolution and correlation. In convolution, the
function X (t) is flipped before we compute the result. For correlation, there is no
flip.
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Properties of RX (τ)

Corollary

RX (0) = average power of X (t)

Proof. Since RX (0) = E[X (t + 0)X (t)] = E[X (t)2], and since E[X (t)2] is
the average power, we have that RX (0) is the average power of X (t).

Corollary

RX (τ) is symmetric. That is, RX (τ) = RX (−τ).

Proof. Note that RX (τ) = E[X (t + τ)X (t)]. By switching the order of
multiplication in the expectation, we have
E[X (t + τ)X (t)] = E[X (t)X (t + τ)] = RX (−τ).
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Properties of RX (τ)

Corollary

P(|X (t + τ)− X (τ)| > ε) ≤ 2(RX (0)− RX (τ))

ε2

This result says that if RX (τ) is slowly decaying from RX (0), then the
probability of having a large deviation |X (t + τ)− X (τ)| is small.
Proof.

P(|X (t + τ)− X (τ)| > ε) ≤ E[(X (t + τ)− X (τ))2]/ε2

=
(
E[X (t + τ)2]− 2E[X (t + τ)X (t)] + E[X (t)2]

)
/ε2

=
(

2E[X (t)2]− 2E[X (t + τ)X (t)]
)
/ε2

= 2
(
RX (0)− RX (τ)

)
/ε2.
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Properties of RX (τ)

Corollary

|RX (τ)| ≤ RX (0), for all τ .

Proof. By Cauchy inequality E[XY ]2 ≤ E[X 2]E[Y 2], we can show that

RX (τ)2 = E[X (t)X (t + τ)]2

≤ E[X (t)2]E[X (t + τ)2]

= E[X (t)2]2

= RX (0)2.
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Ergodic theorem

Under what conditions will R̂X (τ)→ RX (τ) as T →∞?

Theorem (Mean-Square Ergodic Theorem)

Let Y (t) be a W.S.S. process, with mean E[Y (t)] = µ and autocorrelation
function RY (τ). Define

MT
def
=

1

2T

∫ T

−T
Y (t)dt. (4)

Then, E
[∣∣MT − µ

∣∣2]→ 0 as T →∞ if and only if

lim
T→∞

[
1

2T

∫ T

−T

(
1− |τ |

2T

)
RY (τ)dτ

]
= 0. (5)

Proof Optional. See eBook.
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Summary

Everything you need to know about a WSS process.

The mean of a WSS process is a constant (does not need to be
zero)

The correlation function only depends on the difference, so
RX (t1, t2) is toeplitz.

You can write RX (t1, t2) as RX (τ), where τ = t1 − t2.

RX (τ) tells you how much correlation you have with someone
located at a time instant τ from you.

You can think of RX (τ) as the temporal correlation R̂X (τ).

Under certain regularity conditions, R̂X (τ) is a good
approximation of RX (τ).
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Questions?
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