ECE 302: Lecture A.5 Wide Sense Stationary Processes

Prof Stanley Chan

School of Electrical and Computer Engineering Purdue University

© Stanley Chan 2020. All Rights Reserved.

Wide Sense Stationary Processes

Definition

A random process X(t) is wide sense stationary (W.S.S.) if:

•
$$\mu_X(t) = \text{constant}, \text{ for all } t,$$

2
$$R_X(t_1, t_2) = R_X(t_1 - t_2)$$
 for all t_1, t_2 .

Remark 1: WSS processes can also be defined using the autocovariance function

$$C_X(t_1, t_2) = C_X(t_1 - t_2).$$

Remark 2: Because a WSS is completely characterized by the difference $t_1 - t_2$, there is no need to keep track of the absolute indices t_1 and t_2 . We can rewrite the autocorrelation function as

$$R_X(\tau) = \mathbb{E}[X(t+\tau)X(t)]. \tag{1}$$

Visualizing WSS Processes

Figure: Cross sections of the autocorrelation function $R_X(t_1, t_2) = \frac{1}{2} \cos \left(\omega(t_1 - t_2) \right).$

Physical Interpretation of $R_X(\tau)$

Consider the following function:

$$\widehat{R}_X(\tau) \stackrel{\text{def}}{=} \frac{1}{2T} \int_{-T}^{T} X(t+\tau) X(t) dt.$$
(2)

This function is the **temporal average** of $X(t + \tau)X(t)$

How do we understand $\widehat{R}_X(\tau)$? $\widehat{R}_X(\tau)$ is the "un-flipped convolution", or correlation, of $X(\tau)$ and $X(t+\tau)$.

Correlation vs convolution

Figure: The difference between convolution and correlation. In convolution, the function X(t) is flipped before we compute the result. For correlation, there is no flip.

So what?

Lemma

Let
$$\widehat{R}_{X}(\tau) \stackrel{\text{def}}{=} \frac{1}{2T} \int_{-T}^{T} X(t+\tau) X(t) dt$$
. Then,

$$\mathbb{E} \left[\widehat{R}_{X}(\tau) \right] = R_{X}(\tau). \tag{3}$$

Proof.

$$\mathbb{E}\left[\widehat{R}_{X}(\tau)\right] = \frac{1}{2T} \int_{-T}^{T} \mathbb{E}\left[X(t+\tau)X(t)\right] dt$$
$$= \frac{1}{2T} \int_{-T}^{T} R_{X}(\tau) dt$$
$$= R_{X}(\tau) \frac{1}{2T} \int_{-T}^{T} dt$$
$$= R_{X}(\tau).$$

© Stanley Chan 2020. All Rights Reserved

Example

Example 1. Consider a random process X(t) such that for every t, X(t) is an i.i.d. Gaussian random variance with zero mean and unit variance. Find $R_X(\tau)$.

Solution.

$$egin{aligned} \mathcal{R}_X(au) &= \mathbb{E}[X(t+ au)X(t)] = egin{cases} \mathbb{E}[X^2(t)], & au = 0, \ \mathbb{E}[X(t+ au)]\mathbb{E}[X(t)], & au
eq 0, \ au
eq 0, \$$

Using the fact that X(t) is i.i.d. Gaussian for all t, we can show $\mathbb{E}[X^2(t)] = 1$ for any t, and $\mathbb{E}[X(t + \tau)]\mathbb{E}[X(t)] = 0$. Therefore, we have

$$R_X(au) = egin{cases} 1, & au = 0, \ 0, & au
eq 0 \end{cases}$$

Visualization

Figure: The difference between convolution and correlation. In convolution, the function X(t) is flipped before we compute the result. For correlation, there is no flip.

Properties of $R_X(\tau)$

Corollary

 $R_X(0) = average power of X(t)$

Proof. Since $R_X(0) = \mathbb{E}[X(t+0)X(t)] = \mathbb{E}[X(t)^2]$, and since $\mathbb{E}[X(t)^2]$ is the average power, we have that $R_X(0)$ is the average power of X(t).

Corollary

 $R_X(\tau)$ is symmetric. That is, $R_X(\tau) = R_X(-\tau)$.

Proof. Note that $R_X(\tau) = \mathbb{E}[X(t+\tau)X(t)]$. By switching the order of multiplication in the expectation, we have $\mathbb{E}[X(t+\tau)X(t)] = \mathbb{E}[X(t)X(t+\tau)] = R_X(-\tau)$.

Properties of $R_X(\tau)$

Corollary

$$\mathbb{P}(|X(t+ au)-X(au)|>\epsilon)\leq rac{2(R_X(0)-R_X(au))}{\epsilon^2}$$

This result says that if $R_X(\tau)$ is slowly decaying from $R_X(0)$, then the probability of having a large deviation $|X(t + \tau) - X(\tau)|$ is small. **Proof**.

$$\mathbb{P}(|X(t+ au) - X(au)| > \epsilon) \leq \mathbb{E}[(X(t+ au) - X(au))^2]/\epsilon^2 = \left(\mathbb{E}[X(t+ au)^2] - 2\mathbb{E}[X(t+ au)X(t)] + \mathbb{E}[X(t)^2]
ight)$$
 $= \left(2\mathbb{E}[X(t)^2] - 2\mathbb{E}[X(t+ au)X(t)]
ight)/\epsilon^2 = 2\left(R_X(0) - R_X(au)
ight)/\epsilon^2.$

© Stanley Chan 2020. All Rights Reserved

Properties of $R_X(\tau)$

Corollary $|R_X(\tau)| \le R_X(0)$, for all τ .

Proof. By Cauchy inequality $\mathbb{E}[XY]^2 \leq \mathbb{E}[X^2]\mathbb{E}[Y^2]$, we can show that

$$egin{aligned} &\mathcal{R}_X(au)^2 = \mathbb{E}[X(t)X(t+ au)]^2 \ &\leq \mathbb{E}[X(t)^2]\mathbb{E}[X(t+ au)^2] \ &= \mathbb{E}[X(t)^2]^2 \ &= R_X(0)^2. \end{aligned}$$

Ergodic theorem

Under what conditions will $\widehat{R}_X(\tau) \to R_X(\tau)$ as $T \to \infty$?

Theorem (Mean-Square Ergodic Theorem)

Let Y(t) be a W.S.S. process, with mean $\mathbb{E}[Y(t)] = \mu$ and autocorrelation function $R_Y(\tau)$. Define

$$M_{T} \stackrel{\text{def}}{=} \frac{1}{2T} \int_{-T}^{T} Y(t) dt.$$
(4)

Then,
$$\mathbb{E}\left[\left|M_{T}-\mu\right|^{2}\right] \to 0 \text{ as } T \to \infty \text{ if and only if}$$
$$\lim_{T \to \infty} \left[\frac{1}{2T} \int_{-T}^{T} \left(1-\frac{|\tau|}{2T}\right) R_{Y}(\tau) d\tau\right] = 0.$$
(5)

Proof Optional. See eBook.

Summary

Everything you need to know about a WSS process.

- The mean of a WSS process is a constant (does not need to be zero)
- The correlation function only depends on the difference, so $R_X(t_1, t_2)$ is toeplitz.
- You can write $R_X(t_1, t_2)$ as $R_X(\tau)$, where $\tau = t_1 t_2$.
- $R_X(\tau)$ tells you how much correlation you have with someone located at a time instant τ from you.
- You can think of $R_X(\tau)$ as the temporal correlation $\widehat{R}_X(\tau)$.
- Under certain regularity conditions, $\widehat{R}_X(\tau)$ is a good approximation of $R_X(\tau)$.

Questions?