ECE 302: Lecture 6.1 Moment Generating Function

Prof Stanley Chan

School of Electrical and Computer Engineering Purdue University

© Stanley Chan 2020. All Rights Reserved.

Moment Generating Function

Definition

For any random variable X, the **moment generating function** (MGF) $M_X(s)$ is

$$M_X(s) = \mathbb{E}\left[e^{sX}\right]. \tag{1}$$

Discrete:

$$M_X(s) = \sum_{x \in \Omega} e^{sx} p_X(x)$$
(2)

Continuous:

$$M_X(s) = \int_{-\infty}^{\infty} e^{sx} f_X(x) dx$$
(3)

Interpretation: Laplace transform:

$$\mathcal{L}[f](s) = \int_{-\infty}^{\infty} f(t)e^{st}dt.$$

© Stanley Chan 2020. All Rights Reserved

Example 1

Example. Consider a random variable X with three state 0, 1, 2 with probability masses $\frac{2}{6}, \frac{3}{6}, \frac{1}{6}$ respectively. Find MGF.

Solution.

 $M_X(s) =$

$$=\frac{1}{3}+\frac{e^{s}}{2}+\frac{e^{2s}}{6}.$$

Example. Find the MGF for a Poisson random variable.

Solution. The MGF is

 $M_X(s) =$

$$=e^{\lambda e^{s}}e^{-\lambda}.$$

Example 3

Example. Find the MGF for an exponential random variable.

 $\label{eq:solution} \textbf{Solution}. \ \textbf{The MGF is}$

 $M_X(s) =$

$$=rac{\lambda}{\lambda-s},$$
 if $\lambda>s.$

Getting Moments from MGF

Theorem

The MGF has the property that

•
$$M_X(0) = 1$$
,

•
$$\frac{d^k}{ds^k}M_X(s)|_{s=0} = \mathbb{E}[X^k]$$
, for any positive integer k.

Proof. The first property can be proved by noting that

$$M_X(0) = \mathbb{E}[e^{0X}] = \mathbb{E}[1] = 1.$$

The second property holds because

$$\frac{d^k}{ds^k}M_X(s) = \int_{-\infty}^{\infty} \frac{d^k}{ds^k} e^{sx} f_X(x) dx = \int_{-\infty}^{\infty} x^k e^{sx} f_X(x) dx.$$

Setting s = 0 yields

$$\frac{d^k}{ds^k}M_X(s)|_{s=0}=\int_{-\infty}^{\infty}x^kf_X(x)dx=\mathbb{E}[X^k].$$

© Stanley Chan 2020. All Rights Reserved

Moment Generating Functions

Distribution	PMF/ PDF	$\mathbb{E}[X]$	$\operatorname{Var}[X]$	$M_X(s)$
Bernoulli	$\mathbb{P}[X=1]= ho$	p	p(1-p)	$M_X(s) = 1 - p + pe^s$
Binomial	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$M_X(s) = (1 - p + pe^s)^n$
Geometric	$p_X(k) = p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$M_X(s) = rac{pe^s}{1-(1-p)e^s}$
Poisson	$p_X(k) = rac{\lambda^k e^{-\lambda}}{k!}$	λ	λ	$M_X(s) = e^{\lambda(e^s - 1)}$
Gaussian	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$M_X(s) = e^{\mu s + \frac{\sigma^2 s^2}{2}}$
Exponential	$f_X(x) = \lambda \exp\left\{-\lambda x\right\}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$M_X(s) = rac{\lambda}{\lambda-s}$
Uniform	$f_X(x) = \frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$M_X(s) = rac{e^{sb}-e^{sa}}{s(b-a)}$

Table: Moment generating functions of common random variables.

Independent random variables

Theorem

Let X and Y be independent random variables. Let Z = X + Y. Then,

$$M_Z(s) = M_X(s)M_Y(s). \tag{4}$$

Proof. By definition of MGF, we have that

$$M_Z(s) = \mathbb{E}\left[e^{s(X+Y)}
ight] \stackrel{(a)}{=} \mathbb{E}\left[e^{sX}
ight] \mathbb{E}\left[e^{sY}
ight] = M_X(s)M_Y(s),$$

where (a) holds because X and Y are independent.

Many Independent Random Variables

Corollary

- independent random variables X_1, \ldots, X_N
- $Z = \sum_{n=1}^{N} X_n$
- Then, the MGF of Z is

$$M_Z(s) = \prod_{n=1}^N M_{X_n}(s).$$

If X_1, \ldots, X_N are *i.i.d.*, then the MGF is

$$M_Z(s)=\left(M_{X_1}(s)\right)^N.$$

Theorem (Sum of Bernoulli = Binomial)

- X₁, ..., X_N be a sequence of i.i.d. Bernoulli random variables with parameter p
- $Z = X_1 + \ldots + X_N$

Then Z is a binomial random variable with parameters (N, p).

Proof

MGF of Z is

$$egin{aligned} \mathcal{M}_Z(s) &= \mathbb{E}[e^{s(X_1+\ldots+X_N)}] = \prod_{n=1}^N \mathbb{E}[e^{sX_n}] \ &= \prod_{n=1}^N \left(p e^{s1} + (1-p) e^{s0}
ight) = \left(p e^s + (1-p)
ight)^N. \end{aligned}$$

MGF of a binomial random variable: If $Z \sim \text{Binomial}(N, p)$, then

$$\begin{split} M_Z(s) &= \mathbb{E}[e^{sZ}] = \sum_{n=0}^N e^{sk} \binom{N}{k} p^k (1-p)^{N-k} \\ &= \sum_{n=0}^N \binom{N}{k} (pe^s)^k (1-p)^{N-k} = (pe^s + (1-p))^N \,, \end{split}$$

Stanley Chan 2020. All Rights Reserved. 11 / 15

Theorem (Sum of Gaussian = Gaussian)

Let $X_1, ..., X_N$ be a sequence of Gaussian random variables with parameters $(\mu_1, \sigma_1), ..., (\mu_N, \sigma_N)$. Let $Z = X_1 + ... + X_N$ be the sum. Then, Z is a Gaussian random variable:

$$Z = Gaussian\left(\sum_{n=1}^{N} \mu_n, \sum_{n=1}^{N} \sigma_n^2\right).$$
 (5)

Proof

Proof. We skip the proof of the MGF of a Gaussian. It can be shown that

$$M_X(s) = e^{\mu s + \frac{\sigma^2 s^2}{2}}.$$
 (6)

When we have a sequence of Gaussian random variables, then

$$\begin{split} M_Z(s) &= \mathbb{E}[e^{s(X_1 + \ldots + X_N)}] \\ &= M_{X_1}(s) \ldots M_{X_N}(s) \\ &= \left(e^{\mu_1 s + \frac{\sigma_1^2 s^2}{2}}\right) \cdots \left(e^{\mu_N s + \frac{\sigma_N^2 s^2}{2}}\right) \\ &= \exp\left\{\left(\sum_{n=1}^N \mu_n\right) s + \left(\sum_{n=1}^N \sigma_n^2\right) \frac{s^2}{2}\right\}. \end{split}$$

Therefore, the resulting random variable Z is also a Gaussian. The mean and variance are $\sum_{n=1}^{N} \mu_n$ and $\sum_{n=1}^{N} \sigma_n^2$, respectively.

What is a moment generating function?

- $\mathbb{E}[e^{sX}]$
- Can generate moments
- Useful for sum of random variables

Questions?