ECE 302: Lecture 6.3 Jensen’s Inequality

Prof Stanley Chan

School of Electrical and Computer Engineering
Purdue University
Jensen’s inequality

Theorem (Jensen’s Inequality)

Let X be a random variable, and let $g : \mathbb{R} \rightarrow \mathbb{R}$ be a **convex** function. Then

$$E[g(X)] \geq g(E[X]).$$

(1)

Where does it come from?

Since $\text{Var}[X] \geq 0$ for any X, it follows that

$$\underbrace{E[X^2]}_{=E[g(X)]} \geq \underbrace{E[X]^2}_{=g(E[X])}.$$

(2)
Convex functions

Definition
A function f is convex if

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y),$$

for any $0 \leq \lambda \leq 1$.

Figure: Illustration of a convex function, a concave function, and a function that is neither convex or concave.
Convex functions

For 1D functions, they are convex if

\[f''(x) \geq 0. \] (4)

Example. The following functions are convex/concave:

- \(f(x) = \log x \) is concave, because \(f'(x) = \frac{1}{x} \) and \(f''(x) = -\frac{1}{x^2} \leq 0 \) for all \(x \).
- \(f(x) = x^2 \) is convex, because \(f'(x) = 2x \) and \(f''(x) = 2 \) which is positive.
- \(f(x) = e^{-x} \) is convex, because \(f'(x) = -e^{-x} \) and \(f''(x) = e^{-x} \geq 0 \).

Convexity for Jensen’s inequality

\[
\underbrace{f(\lambda x + (1 - \lambda)y)} \leq \underbrace{\lambda f(x) + (1 - \lambda)f(y)},
\]

\[= f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]. \] (5)
Proof of Jensen’s inequality

Proof. Consider $L(X)$ as defined above. Since g is convex, $g(X) \geq L(X)$ for all X. Therefore,

$$
E[g(X)] \geq E[L(X)] = E[aX + b] = aE[X] + b = L(E[X]) = g(E[X]),
$$

where the last equality holds because L is a tangent line evaluated at $E[X]$ which should coincide with $g(E[X])$. □
Remark for Proof

What are \((a, b)\) in the proof? By Taylor expansion, we can show that

\[
g(X) \approx g(\mathbb{E}[X]) + g'(\mathbb{E}[X])(X - \mathbb{E}[X]) \overset{\text{def}}{=} L(X).
\]

Therefore, if we want to be precise, then \(a = g'(\mathbb{E}[X])\) and \(b = g(\mathbb{E}[X]) - g'(\mathbb{E}[X])\mathbb{E}[X].\)
Summary

Theorem (Jensen’s Inequality)

Let X be a random variable, and let $g : \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Then

$$\mathbb{E}[g(X)] \geq g(\mathbb{E}[X]).$$ \hspace{1cm} (6)

Example. By Jensen’s inequality, we have that

(a) $\mathbb{E}[X^2] \geq \mathbb{E}[X]^2$
(b) $\mathbb{E}\left[\frac{1}{X}\right] \geq \frac{1}{\mathbb{E}[X]}$
(c) $\mathbb{E}[\log X] \leq \log \mathbb{E}[X]$
Questions?